基于MSMOTE与FA-CNN-LSTM的断路器故障诊断
CSTR:
作者:
作者单位:

(1.国网天津市电力公司,天津 300010;2.国网天津市电力公司电力科学研究院,天津300384;3.天津理工大学 天津市先进机电系统设计与智能控制重点实验室,天津 300384;4.机电工程国家级实验教学示范中心,天津理工大学,天津 300384)

作者简介:

郑 悦 (1982-),硕士,高级工程师 ,主要从事配电网发展规划、智能配电网建设应用等方面的研究。

通讯作者:

中图分类号:

TM561

基金项目:

国网天津市电力公司科技项目(KJ22-2-02) 资助项目


Fault diagnosis of circuit breakers based on MSMOTE and FA-CNN-LSTM
Author:
Affiliation:

(1.State Grid Tianjin Electric Power Company, Tianjin 300010, China;2.Electric Power Research Institute of State Grid Tianjin Electric Power Company, Tianjin 300384, China;3.Tianjin Key Laboratory for Advanced Mechatronic System Design and Intelligent Control, School of Mechanical Engineering, Tianjin University of Technology, Tianjin 300384, China;4.National Demonstration Center for Experimental Mechanical and Electrical Engineering Education,Tianjin University of Technology, Tianjin 300384, China)

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    本研究针对断路器数据采集不平衡的问题, 为实现对断路器的高效故障诊断,采用基于马氏距离的改进 合成少数类过采样技术(modified synthetic minority over-sampling technique,MSMOTE)进行数据扩充,并通过萤火虫算法(firefly algorithm,FA)优化卷积长短时记忆网络 (convolutional neural network-long short-term memory,CNN-LSTM)的隐藏层节点数和学习率。将经MSMOTE算法扩充后的数据输入到FA-CNN-LSTM模型中进行训练分类。实验结果表明,所提方法在故障样本较少的情况下同样能实现对断路器的高效故障诊断。通过FA算法的优化,分类准确率达到了99%。因此,本研究提出的断路器故障诊断方法具有较好的性能,为电网设备状态分析提供了一种新的有效途径。

    Abstract:

    Addressing the issue of imbalanced data acquisition in circuit breakers,this study adopts the Mahalanobis distance-based modified synthetic minority over-sampling technique (MSMOTE) for data augmentation to achieve efficient fault diagnosis for circuit breakers. Additionally,the firefly algorithm (FA) is utilized to optimize the number of nodes in the hidden layers and learning rate of convolutional neural network-long short-term memory (CNN-LSTM).The data expanded by the MSMOTE algorithm is input into the FA-CNN-LSTM model for training and classification.Experimental results indicate that the proposed method can efficiently diagnose circuit breaker faults even in scenarios with limited fault samples.With the optimization by the FA algorithm,the classification accuracy reaches 99%.Therefore,the circuit breaker fault diagnosis method proposed in this study exhibits excellent performance,offering a novel and effective approach for the analysis of power grid equipment status.

    参考文献
    相似文献
    引证文献
引用本文

郑悦,姚瑛,晋萃萃,陈沼宇,曹冉冉,樊怀聪.基于MSMOTE与FA-CNN-LSTM的断路器故障诊断[J].光电子激光,2025,(4):421~428

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2023-10-26
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2025-03-05
  • 出版日期:
文章二维码