融合轻量级网络的农业病害检测
DOI:
CSTR:
作者:
作者单位:

(1.安徽理工大学 电气与信息工程学院,安徽 淮南 232001; 2.皖西学院,安徽 六安 237012; 3.安徽理工大学 计算机科学与工程学院,安徽 淮南 232001)

作者简介:

黄友锐 (1971-),男,博士,教授,博士生导师,研究方向为智能控制和矿山物联网.

通讯作者:

中图分类号:

基金项目:

国家自然科学基金(61772033)和安徽省科技重大专项计划项目(1603091012)资助项目


Agricultural disease detection integrated into lightweight networks
Author:
Affiliation:

(1.School of Electrical and Information Engineering, Anhui University of Science and Technology, Huainan, Anhui 232001, China;2.Wanxi University, Lu′an, Anhui 237012, China;3.School of Computer Science and Engineering, Anhui University of Science and Technology, Huainan, Anhui 232001, China)

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    农业病害会导致作物脱叶早,光合作用减弱,从而影响作物质量,减少农民收入。针对病害初发期间目标小、背景复杂和室外光线变化大导致的目标误检问题,本文提出一种融合轻量级网络的YOLOv4检测算法。首先对主干网络进行剪枝并增加多尺度的分组卷积提高模型对复杂背景的抗干扰性,其次设计轻量级SCE(space channel expand) 注意力机制降低深层网络中细节信息丢失的影响。最后设计跳跃连接特征金字塔(jump connection feature pyramid network,JC-FPN) 替换PAnet(path aggregation network)特征融合模块从而进一步实现模型轻量化。实验结果表明,改进算法在本文数据集上的mAP50达到了84.17%,检测速度为50 FPS,相比于YOLOv4检测算法分别提高了0.71%和10 FPS,满足移动端对农业病害的检测精度和速度的要求。

    Abstract:

    Agricultural diseases can cause early defoliation of crops and weakened photosynthesis,which can affect crop quality and reduce farmers′ incomes.Aiming at the problem of target miss detection exception caused by small targets, complex background and unstable natural light during the initial occurrence of the diseases,this paper proposes a YOLOv4 detection algorithm that integrating lightweight networks.Firstly,the trunk network is simplified and multi-scale group convolution is enhanced to improve the anti-interference ability of the mode in the complex backgrounds.Secondly,the lightweight space channel expand (SCE) attention mechanism is designed to reduce the impact of detail information loss in the deep network.Finally,the pyramid structure with the feature of skip connection is applied for the replacement of integration module with path aggregation network (PAnet) feature to further realize the model lightweight.Experimental results show that the improved algorithm reaches 84.17% of mAP50 and the detection speed is 50 FPS in the dataset of this paper,which is 0.71% and 10 FPS higher than that of YOLOv4 detection algorithm,that meets the requirements of the detection accuracy and speed of agricultural diseases on the mobile devices.

    参考文献
    相似文献
    引证文献
引用本文

黄友锐,方明帅,韩涛,董卉圆,刘玉文,刘权增.融合轻量级网络的农业病害检测[J].光电子激光,2023,34(9):950~959

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2022-06-21
  • 最后修改日期:2022-08-15
  • 录用日期:
  • 在线发布日期: 2023-10-24
  • 出版日期:
文章二维码