融入特征交互与注意力的轻量化混凝土裂缝分割算法
CSTR:
作者:
作者单位:

(贵州大学 大数据与信息工程学院,贵州 贵阳 550025)

作者简介:

张荣芬 (1977-),女,博士,教授,硕士生导师,主要从事机器视觉、智能算法及智能硬件等方面的研究 。

通讯作者:

中图分类号:

TP391.4

基金项目:

贵州省基础研究自然科学项目(黔科合基础-ZK[2021]重点 001) 资助项目


Lightweight concrete crack segmentation algorithm integrating feature interaction and attention
Author:
Affiliation:

(College of Big Data and Information Engineering, Guizhou University, Guiyang, Guizhou 550025, China)

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    裂缝是混凝土建筑结构中最大的安全隐患之一。为实时高效分割混凝土裂缝并及时评估其危害,提出一种改进DeepLabV3+的轻量化裂缝分割算法。首先,使用MobileNetV3作为轻量级主干,大幅降低模型参数量;其次,使用尺度内特征交互模块(attention-based intrascale feature interaction,AIFI) 建模全局信息并引入基于归一化的注意力模块(normalization-based attention module,NAM) ,促进多层次裂缝特征信息的交互;此外,提取低层次高分辨率特征后引入混合注意力机制(ACmix),更有效捕获细节特征;最后,设计C2f-SCConv模块,对融合后的高低层级特征流解码,减小计算冗余,提升对多尺度特征的感知能力。在公共裂缝数据集Concrete 3k和Asphalt3k上的实验结果表明,提出的模型参数量相比DeepLabV3+降低了88.1%,像素准确率提升0.02%,平均交并比 (mean intersection over union,mIoU) 达到了86.21%,平均帧率为47.91帧/s,在显著降低模型复杂度的同时提高了对裂缝的分割效能。

    Abstract:

    Cracks pose one of the most safety hazard to concrete building structures.A lightweight crack segmentation algorithm with improved DeepLabV3+ is proposed for efficiently segmenting concrete cracks and assessing their hazards in a timely manner.Firstly,MobileNetV3 is used as the lightweight backbone to significantly reduce the number of model parameters.Secondly,the attention-based intrascale feature interaction (AIFI) module is used to model the global information,and the normalization-based attention module (NAM) is introduced to facilitate the interaction of multi-level crack feature information.In addition,the mixed model of both self-attention and convolution is introduced after extracting the low-level high-resolution features,which captures the detailed features more efficiently; and finally,the C2f-SCConv module is designed to decode the fused high- and low-level feature streams,reducing computational redundancy and improving the perception of multi-scale features.Experimental results on the public crack datasets Concrete3k and Asphalt3k show that the number of parameters of the proposed model is reduced by 88.1% compared with that of the DeepLabV3+ model,the pixel accuracy is improved by 0.02%,the mean intersection over union (mIoU) reaches 86.21%,and the average frame rate is 47.91 frames per second.It means that the proposed methods reduce complexity of the model while improve segmentation efficiency to the cracks significantly.

    参考文献
    相似文献
    引证文献
引用本文

彭垚潘,张荣芬,刘宇红,欧阳玉旋.融入特征交互与注意力的轻量化混凝土裂缝分割算法[J].光电子激光,2025,(7):722~732

复制
相关视频

分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2024-02-04
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2025-06-04
  • 出版日期:
文章二维码