融合联合范数和主成分分析的焊缝缺陷识别研究
CSTR:
作者:
作者单位:

(1.天津理工大学 天津市先进机电系统设计与智能控制重点实验室,天津 300384;2.彼合彼方机器人(天津)有限公司,天津 300401;3.天津理工大学 机电工程国家级实验教学示范中心,天津 300384)

作者简介:

王肖锋 (1977-),男,博士,副教授,硕士生导师,主要从事模式识别、深度学习等方面的研究。

通讯作者:

中图分类号:

TG441.7

基金项目:

国家重点研发计划(2018AA0103004)和天津市科技计划重大专项(20YFZCGX00550) 资助项目


Research on weld defect recognition by integrating joint norm and principal component analysis
Author:
Affiliation:

(1.Tianjin Key Laboratory for Advanced Mechatronic System Design and Intelligent Control, Tianjin University of Technology, Tianjin 300384, China;2.BingooRobot (Tianjin) Co., Ltd, Tianjin 300401, China;3.National Demonstration Center for Experimental Mechanical and Electrical Engineering Education, Tianjin University of Technology, Tianjin 300384, China)

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    焊缝表面缺陷识别在焊接过程和质量控制中起着至关重要的作用。经典的二维主成分分析(two-dimensional principal component analysis,2DPCA)算法在焊缝缺陷识别中采用F范数度量存在对异常偏差值和噪声敏感、鲁棒性差、投影距离最大的同时不能有效减小重构误差等问题。针对上述问题,本文使用了联合范数度量方式,将L1和R1范数添加到函数模型中,提出了一种名为L1-2DPCA-R1的二维主成分分析算法,列出了该算法的迭代求解方法。该算法降低了图像的重构误差,有着较好的重构性能,抑制了异常偏差值和噪声的影响,提高了鲁棒性,保持了分类率的优势。实验结果表明,该算法能够准确检测各种焊缝缺陷类型,比其他主成分分析 (principal compoent analysis,PCA) 算法抗大噪声的能力更强、鲁棒性更优、重构误差更小。

    Abstract:

    Weld surface defect recognition plays a vital role in the welding process and quality control.The classical two-dimensional principal component analysis (2DPCA) algorithm using the Fnorm metric in weld defect recognition suffers from the problems of being sensitive to abnormal deviation values and noise,poor robustness,and not being able to effectively reduce the reconstruction error while the projection distance is maximum.Aiming at the above problems,this paper uses a joint-norm metric,a two-dimensional principal component analysis algorithm called L1-2DPCA-R1 is proposed by adding L1 and R1 norm to the function model,and the iterative solution method of the algorithm is listed.This algorithm reduces the reconstruction error of the image,has better reconstruction performance,suppresses the influence of abnormal deviation values and noise,improves the robustness,and maintains the advantage of classification rate.Experiments show that the algorithm can accurately detect various weld defect types,with better resistance to large noise,better robustness,and smaller reconstruction error than other principal component analysis (PCA) algorithms.

    参考文献
    相似文献
    引证文献
引用本文

徐升旗,张超,王肖锋.融合联合范数和主成分分析的焊缝缺陷识别研究[J].光电子激光,2025,(7):705~711

复制
相关视频

分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2024-04-09
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2025-06-04
  • 出版日期:
文章二维码