基于非线性扩散与高维M-SURF描述符的双目视觉测量方法
CSTR:
作者:
作者单位:

(1.安徽工业大学 机械工程学院,安徽 马鞍山 243000; 2.特种重载机器人安徽省重点实验室,安徽 马鞍山 243000)

作者简介:

许四祥 (1974-),男,博士,教授,硕士生导师,主要从事机器人与机器视觉方面的研究 。

通讯作者:

中图分类号:

基金项目:

国家自然科学基金(51374007)、安徽高校自然科学研究项目重点项目(KJ2020A0259)和特种重载机器人安徽省重 点实验室开放基金项目(TZJQR005-2021)资助项目


Binocular vision measurement method based on nonlinear diffusion and high-dimensional M-SURF descriptor
Author:
Affiliation:

(1.School of Mechanical Engineering, Anhui University of Technology, Ma′anshan, Anhui 243000, China;2.Anhui Province Key Laboratory of Special Heavy Load Robot, Ma′anshan, Anhui 243000, China)

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    针对传统图像匹配算法存在误匹配率高和双目视觉测量精度低的问题,本文提出一种基于非线性扩散与高维改进加速鲁棒特征(modified-speeded up robust features,M-SURF)描述符的双目视觉测量方法。首先改进非线性扩散模型中的PM(Perona-Malik)模型,使图像中边缘区域得以平滑而维持内部平坦区域不变,再将扩散后图像与原始图像进行差分运算,利用KAZE算法检测特征点;然后采用环形邻域构建描述符,在对Harr小波响应值进行叠加时,根据与其垂直方向响应值的正负号进行多区间划分,生成高维M-SURF描述符;最后采用Hamming距离匹配,利用随机采样一致性 (random sample consensus,RANSAC)算法剔除误匹配并筛选出测量所需的匹配点对,根据平行双目视觉测量原理获取匹配点对的三维坐标即可完成测量。实验结果表明,本文提出算法的匹配正确率较传统KAZE算法提高24.09%,测量最小相对误差达到0.375 6%,满足测量精度的要求。

    Abstract:

    Aiming at high mismatching rate in the traditional image matching algorithms and low measurement accuracy of binocular vision,a binocular vision measurement method based on nonlinear diffusion and high-dimensional modified-speeded up robust features (M-SURF) descriptor is proposed in this paper.Firstly,the nonlinear diffusion Perona-Malik (PM) model is improved to smooth the edge region and maintain the internal flat region unchanged in the image.Then,the diffusion image and the original image are differential operated to obtain the differential image,and the KAZE algorithm is used to detect the feature points.Secondly,the ring neighborhood is used to construct the descriptor.When the Harr wavelet response value is superimposed,the high-dimensional M-SURF descriptor is generated by multi-interval division according to the sign of the vertical response value;Finally,Hamming distance is used to match,and random sample consensus (RANSAC) algorithm is used to eliminate mis-matching and screen out the key matching point pairs required for measurement.The measurement can be completed by obtaining the 3D coordinates of the key matching point pairs according to the principle of parallel binocular vision measurement.The experimental results show that the matching accuracy of the proposed algorithm is 24.09% higher than that of the traditional KAZE algorithm,and the minimum relative error of measurement is 0.375 6%,which meets the requirements of measurement accuracy.

    参考文献
    相似文献
    引证文献
引用本文

宋祥,许四祥,杨利法,施宇翔.基于非线性扩散与高维M-SURF描述符的双目视觉测量方法[J].光电子激光,2024,35(4):405~413

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2022-12-08
  • 最后修改日期:2023-04-04
  • 录用日期:
  • 在线发布日期: 2024-03-11
  • 出版日期:
文章二维码