精密刀具表面缺陷认知神经网络模型研究
DOI:
CSTR:
作者:
作者单位:

1.浙江理工大学;2.嘉兴大学信息科学与工程学院;3.恒锋工具股份有限公司

作者简介:

通讯作者:

中图分类号:

TP39

基金项目:

国家自然科学基金面上项目(62374074)、浙江省“尖兵领雁”研发攻关计划 (2024C04028)、嘉兴市公益性研究计划项目(SQGY202400009)、校企合作项目(00523144)、海盐重点研发计划项目(2024ZD03)、嘉兴大学人才项目(CD70623008);


Research on Surface Defect Cognition Neural Network Model for Precision Cutter Tool
Author:
Affiliation:

1.Zhejiang Sci-Tech University,Hangzhou;2.College of Information Science and Engineering,Jiaxing University;3.EST Tools Co

Fund Project:

National Natural Science Foundation of China(62374074)、Zhejiang Province Pioneer and Leading Geese Plan(2024C04028)、 the Public Welfare Research Project of Jiaxing City(SQGY202400009)、the School-enterprise cooperation project(00523144)、the Key Research and Development Project of Haiyan(2024ZD03)、Human Resources-related Program of Jiaxing University(CD70623008);

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    精密刀具表面凸起齿的正刀口在使用过程中容易产生磨损和磕碰缺陷,这种缺陷存在尺度小、纹理多样等特点,传统机器学习模型难以实现高精度检测。为此本文提出一种基于改进You Only Look Once Version 8 (YOLO-v8)的刀具缺陷检测方法(CutterNet)。首先,提出Cross-Stage Partial Multi-Scale Attention Module (CSPMSAM),用于提取刀具局部缺陷特征,增强模型对不同尺度缺陷的检测能力;其次,引入Asymptotic Feature Pyramid Network (AFPN),加强不同尺度特征间融合,缩小它们之间的信息差距;最后,使用Inner-CIoU( Complete Intersection over Union )替换YOLO-v8中CIoU损失函数,增强边界框的回归结果。实验结果表明,改进后的算法在检测准确率方面提升了3.1%,模型参数量下降30.12%,推理速度由58帧提升到60帧,优于其他大多数主流目标检测模型,该算法已经应用到刀具缺陷实时检测系统。

    Abstract:

    Surface of cutter front side with raised teeth is prone to be worn and bumped under high-frequency using. These defects are characterized by small scales and diverse shapes, making it difficult for traditional machine learning models to achieve high-precision. To address this issue, a cutter defect detection method (CutterNet) was proposed based on an improved YOLO-v8. First, the Cross-Stage Partial Multi-Scale Attention Module is introduced (CSPMSAM) to extract local features and enhance the model's ability solving different scales. Secondly, the Asymptotic Feature Pyramid Network (AFPN) is incorporated to strengthen the fusion of features across different scales and reduce the information gap between them. Finally, the CIoU loss function in YOLO-v8 with the Inner-CIoU (Complete Intersection over Union) is replaced to improve the regression results of the bounding boxes. Experimental results indicate that the improved algorithm increases detection accuracy by 3.1%, reducing the model parameter amount by 30.12%. The inference speed is also improved from 58 to 60 frames. This performance surpasses the up-to-date object detection models. This algorithm has been applied to a real-time detection system for tools defects.

    参考文献
    相似文献
    引证文献
引用本文
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2024-10-21
  • 最后修改日期:2025-01-03
  • 录用日期:2025-01-13
  • 在线发布日期:
  • 出版日期:
文章二维码