基于双聚合与代理注意力的结肠息肉分割方法研究
DOI:
CSTR:
作者:
作者单位:

1.湖北工业大学;2.美国南卡罗来纳大学

作者简介:

通讯作者:

中图分类号:

TP391

基金项目:

国家自然科学基金项目(面上项目,重点项目,重大项目);国家留学基金(201808420418);湖北省自然科学基金(2019CFB530);湖北省科技厅重大专项(2019ZYYD020)


Research on colon polyp segmentation method based on dual aggregation and agent attention
Author:
Affiliation:

1.Hubei university of technology;2.University of South Carolina, Columbia

Fund Project:

The National Natural Science Foundation of China (General Program, Key Program, Major Research Plan);China Scholarship Council(201808420418);Hubei Provincial Natural Science Foundation(2019CFB530);Major Special Projects of Hubei Provincial Department of Science and Technology(2019ZYYD020)

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    针对结肠息肉区域误识别、边界定位模糊及复杂样本分割困难的问题,本文提出一种双聚合与代理注意力的结肠息肉分割方法。首先通过 Agent-PVT(Agent Pyramid Vision Transformer, AgentPVT)提取上下文信息,利用代理注意力(Agent Attention)在减少计算量的同时保留了全局建模能力。然后设计全局到局部聚合注意力模块(Global-to-Local Aggregation Module, GLAM),捕捉特征图的全局和局部纹理特征,同时设计边界聚合模块(Boundary Aggregation Module, BAM),高效的聚合边界信息和语义信息,准确地定位息肉轮廓。最后在损失函数中引入批量核范数最大化(Batch Nuclear-norm Maximization, BNM)方法,增强模型对复杂样本的判别能力。提出的方法在五个数据集上进行了实验分析,实验结果表明该方法具有良好的息肉分割性能,其中在 Kvasir-SEG 数据集上,mDice 和 mIoU 分别达到了 92.83 和 88.16%。

    Abstract:

    To solve the problems of misidentification of colon polyp areas, fuzzy boundary localization, and difficulty in segmenting complex samples, this paper proposed a colon polyp segmentation method using dual aggregation and proxy attention. Firstly, contextual information is extracted through Agent-PVT (Agent Pyramid Vision Transformer), where Agent Attention reduced computational complexity while retaining global modeling capabilities. Then designed a Global to Local Aggregation Module (GLAM) to capture the global and local texture features of the feature map, while designing a Boundary Aggregation Module (BAM) to efficiently aggregate boundary and semantic information and accurately locate polyp contours. Finally, the Batch Nuclear-norm Maximization (BNM) method is introduced into the loss function to enhance the model's discriminative ability for complex samples. The proposed method was experimentally analyzed on five datasets, and the experimental results showed that the method has good polyp segmentation performance. Among them, on the Kvasir-SEG dataset, mDice and mIoU reached 92.83% and 88.16%, respectively.

    参考文献
    相似文献
    引证文献
引用本文
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2024-10-22
  • 最后修改日期:2025-01-03
  • 录用日期:2025-01-13
  • 在线发布日期:
  • 出版日期:
文章二维码