双分支特征提取与循环细化的动态场景去模糊
DOI:
CSTR:
作者:
作者单位:

(西安建筑科技大学 理学院,陕西 西安710055)

作者简介:

陈清江 (1966-),男,博士,教授,硕士生导师,主要从事小波分析、图像处理与信号处理方面的研究。

通讯作者:

中图分类号:

基金项目:

国家自然科学基金(61902304)、陕西省自然科学基础研究计划(2021JQ-495)和陕西省自然科学基金(2019JQ-755)资助项目


Dynamic scene deblurring with two-branch feature extraction and cyclic refinement
Author:
Affiliation:

(College of Science,Xi′an University of Architecture and Technology,Xi′an, Shaanxi 710055, China)

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    针对现有的动态场景图像去模糊方法存在的特征提取不准确、未充分利用有效特征的问题,本文提出了一种基于双分支特征提取与循环细化的动态场景图像去模糊网络。整个网络包括特征提取网络、循环细化网络(cyclic refinement network,CRN) 、图像重建(image reconstruction,IR) 3部分。其中,特征提取网络包括模糊图像细节和轮廓特征(contour feature,CF) 的提取,以残差单元作为特征提取网络的基本单元;循环细化网络通过交替融合轮廓特征和细节特征(detail feature,DF) 来细化特征图,得到模糊图像的细化特征(refinement feature,RF) ;最后,在图像重建阶段,复用轮廓和细节特征,结合残差学习策略将轮廓特征、细节特征和细化后的特征逐级融合后通过非线性映射的方式重建清晰图像。在广泛使用的动态场景模糊数据集GOPRO上的实验结果表明,该方法的平均峰值信噪比(peak signal to noise ratio,PSNR)达到31.86,平均结构相似度(structure similarity,SSIM)达到0.947 3,所提方法复原的图像包含丰富细节,具有更好的去模糊效果,在客观评价指标和主观视觉效果上均优于对比方法。

    Abstract:

    Aiming at the problems of inaccurate feature extraction and insufficient use of effective features in existing dynamic scene image deblurring methods,this paper proposes a dynamic scene image deblurring network based on two-branch feature extraction and cyclic refinement.The whole network consists of feature extraction network,cyclic refinement network (CRN) and image reconstruction (IR).Among them,the feature extraction network includes the extraction of detail and contour features (CFs) of the blurred image,using the residual unit as the basic unit of the feature extraction network.The cyclic refinement network refines the feature map by alternately fusing contour features and detail features (DFs) to obtain the refinement features (RFs) of the blurred image.Finally,in the image reconstruction stage,the contour and detail features are reused and combined with the residual learning strategy to fuse the contour features,detail features and refined features step by step,and then the clear image is reconstructed by nonlinear mapping.The experimental results on the widely used dynamic scene blurring dataset GOPRO show that the average peak signal to noise ratio (PSNR) of this method reaches 31.86,and the average structure similarity (SSIM) reaches 0.947 3.The images restored by the proposed method contain rich details and have better deblurring effect.The proposed method is superior to the comparison method in terms of objective evaluation index and subjective visual effect.

    参考文献
    相似文献
    引证文献
引用本文

陈清江,王巧莹.双分支特征提取与循环细化的动态场景去模糊[J].光电子激光,2024,35(6):580~587

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2022-11-06
  • 最后修改日期:2023-01-30
  • 录用日期:
  • 在线发布日期: 2024-05-08
  • 出版日期:
文章二维码