改进YOLOv8的输电线路异物检测算法
DOI:
CSTR:
作者:
作者单位:

河南理工大学

作者简介:

通讯作者:

中图分类号:

基金项目:

国家自然科学基金青年基金(62101176)


Improved YOLOv8 algorithm for foreign object detection on transmission lines
Author:
Affiliation:

Henan Polytechnic University

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    针对输电线路异物检测任务中存在的目标被遮挡、尺度不规则及复杂背景干扰等问题,本文提出了一种基于YOLOv8改进的输电线路异物检测算法SEPC-YOLOv8。该算法在主干网络中引入基于拆分的卷积(Split Based Convolution,SPConv),以减少信息冗余并提高特征提取效率;在SPPF(spatial pyramid pooling fast)中嵌入空间增强注意力模块(Spatially Enhanced Attention Module,SEAM),构建SPPF_SE模块,通过结合全局上下文感知和局部特征细化,改善因目标被遮挡引起的漏检问题;设计C2f_SAL模块替代颈部C2f(csplayer_2conv),用于捕捉多尺度目标的关键特征,增强模型在复杂背景下的检测精度;同时引入Inner-PIoU(inner powerful intersection over union)损失函数,优化目标框定位精度。实验结果表明,所提算法的均值平均精度达到了96.36%,相比基线算法提升了3.02%,FPS达到51.69,能够满足输电线路中异物检测的实际需求。

    Abstract:

    To address the challenges of target occlusion, irregular scales, and complex background interference in transmission line foreign object detection tasks, this paper proposes an improved YOLOv8-based detection algorithm named SEPC-YOLOv8. The algorithm introduces Split-Based Convolution (SPConv) into the backbone network to reduce information redundancy and enhance feature extraction efficiency. A Spatially Enhanced Attention Module (SEAM) is embedded into SPPF (Spatial Pyramid Pooling Fast), constructing an SPPF_SE module that combines global contextual awareness with local feature refinement to mitigate missed detections caused by target occlusion. The C2f_SAL module is designed to replace the neck's C2f (csplayer_2conv) module, enabling effective capture of critical features in multi-scale targets and improving detection accuracy in complex backgrounds. Additionally, the Inner-PIoU (Inner Powerful Intersection over Union) loss function is introduced to optimize bounding box localization precision. Experimental results demonstrate that the proposed algorithm achieves a mean average precision of 96.36%, representing a 3.02% improvement over the baseline algorithm, while maintaining a detection speed of 51.69 FPS. These performance metrics confirm the algorithm's capability to meet practical requirements for foreign object detection in transmission lines.

    参考文献
    相似文献
    引证文献
引用本文
相关视频

分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2025-03-03
  • 最后修改日期:2025-04-30
  • 录用日期:2025-05-26
  • 在线发布日期:
  • 出版日期:
文章二维码